Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Condensed tannins increase nitrogen recovery by trees following insect defoliation.

Identifieur interne : 001E37 ( Main/Exploration ); précédent : 001E36; suivant : 001E38

Condensed tannins increase nitrogen recovery by trees following insect defoliation.

Auteurs : Michael D. Madritch [États-Unis] ; Richard L. Lindroth [États-Unis]

Source :

RBID : pubmed:25952793

Descripteurs français

English descriptors

Abstract

While the importance of plant secondary metabolites to belowground functioning is gaining recognition, the perception remains that secondary metabolites are produced for herbivore defense, whereas their belowground impacts are ecological by-products, or 'afterlife' effects. However, plants invest a significant amount of resources into production of secondary metabolites that have minimal effects on herbivore resistance (e.g. condensed tannins and insect herbivores). We show that genetically mediated variation in condensed tannin concentration is correlated with plant nitrogen recovery following a severe defoliation event. We used single-tree mesocosms labeled with (15) N to track nitrogen through both the frass and litter cycling pathways. High concentrations of leaf tannins in Populus tremuloides were correlated with (15) N recovery from frass within the same growing season and in the following growing season. Likewise, leaf tannin concentrations were also correlated with (15) N recovery from the litter of defoliated trees in the growing season following the defoliation event. Conversely, tannins were not well correlated with nitrogen uptake under conditions of nominal herbivory. Our results suggest that tannins may confer benefits in response to herbivore pressure through conserved belowground nitrogen cycling, rather than via defensive properties. Consequently, tannins may be considered as chemical mediators of tolerance rather than resistance.

DOI: 10.1111/nph.13444
PubMed: 25952793


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Condensed tannins increase nitrogen recovery by trees following insect defoliation.</title>
<author>
<name sortKey="Madritch, Michael D" sort="Madritch, Michael D" uniqKey="Madritch M" first="Michael D" last="Madritch">Michael D. Madritch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25952793</idno>
<idno type="pmid">25952793</idno>
<idno type="doi">10.1111/nph.13444</idno>
<idno type="wicri:Area/Main/Corpus">001D01</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D01</idno>
<idno type="wicri:Area/Main/Curation">001D01</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D01</idno>
<idno type="wicri:Area/Main/Exploration">001D01</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Condensed tannins increase nitrogen recovery by trees following insect defoliation.</title>
<author>
<name sortKey="Madritch, Michael D" sort="Madritch, Michael D" uniqKey="Madritch M" first="Michael D" last="Madritch">Michael D. Madritch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analysis of Variance (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Isotope Labeling (MeSH)</term>
<term>Moths (physiology)</term>
<term>Nitrogen (metabolism)</term>
<term>Nitrogen Isotopes (MeSH)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Proanthocyanidins (metabolism)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de variance (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Arbres (physiologie)</term>
<term>Azote (métabolisme)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Génotype (MeSH)</term>
<term>Herbivorie (MeSH)</term>
<term>Isotopes de l'azote (MeSH)</term>
<term>Marquage isotopique (MeSH)</term>
<term>Papillons de nuit (physiologie)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Proanthocyanidines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitrogen</term>
<term>Proanthocyanidins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Proanthocyanidines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Feuilles de plante</term>
<term>Papillons de nuit</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Moths</term>
<term>Plant Leaves</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Animals</term>
<term>Genotype</term>
<term>Herbivory</term>
<term>Isotope Labeling</term>
<term>Nitrogen Isotopes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de variance</term>
<term>Animaux</term>
<term>Génotype</term>
<term>Herbivorie</term>
<term>Isotopes de l'azote</term>
<term>Marquage isotopique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">While the importance of plant secondary metabolites to belowground functioning is gaining recognition, the perception remains that secondary metabolites are produced for herbivore defense, whereas their belowground impacts are ecological by-products, or 'afterlife' effects. However, plants invest a significant amount of resources into production of secondary metabolites that have minimal effects on herbivore resistance (e.g. condensed tannins and insect herbivores). We show that genetically mediated variation in condensed tannin concentration is correlated with plant nitrogen recovery following a severe defoliation event. We used single-tree mesocosms labeled with (15) N to track nitrogen through both the frass and litter cycling pathways. High concentrations of leaf tannins in Populus tremuloides were correlated with (15) N recovery from frass within the same growing season and in the following growing season. Likewise, leaf tannin concentrations were also correlated with (15) N recovery from the litter of defoliated trees in the growing season following the defoliation event. Conversely, tannins were not well correlated with nitrogen uptake under conditions of nominal herbivory. Our results suggest that tannins may confer benefits in response to herbivore pressure through conserved belowground nitrogen cycling, rather than via defensive properties. Consequently, tannins may be considered as chemical mediators of tolerance rather than resistance. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25952793</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>208</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Condensed tannins increase nitrogen recovery by trees following insect defoliation.</ArticleTitle>
<Pagination>
<MedlinePgn>410-20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.13444</ELocationID>
<Abstract>
<AbstractText>While the importance of plant secondary metabolites to belowground functioning is gaining recognition, the perception remains that secondary metabolites are produced for herbivore defense, whereas their belowground impacts are ecological by-products, or 'afterlife' effects. However, plants invest a significant amount of resources into production of secondary metabolites that have minimal effects on herbivore resistance (e.g. condensed tannins and insect herbivores). We show that genetically mediated variation in condensed tannin concentration is correlated with plant nitrogen recovery following a severe defoliation event. We used single-tree mesocosms labeled with (15) N to track nitrogen through both the frass and litter cycling pathways. High concentrations of leaf tannins in Populus tremuloides were correlated with (15) N recovery from frass within the same growing season and in the following growing season. Likewise, leaf tannin concentrations were also correlated with (15) N recovery from the litter of defoliated trees in the growing season following the defoliation event. Conversely, tannins were not well correlated with nitrogen uptake under conditions of nominal herbivory. Our results suggest that tannins may confer benefits in response to herbivore pressure through conserved belowground nitrogen cycling, rather than via defensive properties. Consequently, tannins may be considered as chemical mediators of tolerance rather than resistance. </AbstractText>
<CopyrightInformation>© 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Madritch</LastName>
<ForeName>Michael D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>05</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009587">Nitrogen Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D044945">Proanthocyanidins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007553" MajorTopicYN="N">Isotope Labeling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009587" MajorTopicYN="N">Nitrogen Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044945" MajorTopicYN="N">Proanthocyanidins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus tremuloides</Keyword>
<Keyword MajorTopicYN="N">genotypic variation</Keyword>
<Keyword MajorTopicYN="N">herbivory</Keyword>
<Keyword MajorTopicYN="N">nutrient cycling</Keyword>
<Keyword MajorTopicYN="N">plant-insect interactions</Keyword>
<Keyword MajorTopicYN="N">tannin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>01</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25952793</ArticleId>
<ArticleId IdType="doi">10.1111/nph.13444</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Madritch, Michael D" sort="Madritch, Michael D" uniqKey="Madritch M" first="Michael D" last="Madritch">Michael D. Madritch</name>
</noRegion>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25952793
   |texte=   Condensed tannins increase nitrogen recovery by trees following insect defoliation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25952793" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020